
DEM-based Illumination
Simulation in a Web Map
Service using Lunaserv

Caleb Hanger, Nick Estes, Mark Robinson,
Ernest Bowman-Cisneros

Lunar Reconnaissance Orbiter Camera

Arizona State University

 The LROC SOC (Lunar Reconnaissance Orbiter Science Operations Center) developed its own
implementation of WMS (Web Map Service), called Lunaserv [1].
 Lunaserv features rendering engines for a wide variety of image layer types, including raster data,
vector data (specified either via a plain text format developed specially for Lunaserv, or via Esri
Shapefiles), and dynamically-generated, topography-based, synthetic illumination. The renderer
responsible for the illumination layer is called map_illum_layer.
 map_illum_layer was originally developed with the Moon in mind, but is usable for any planetary
body, via the use of an appropriate DEM.
 map_illum_layer needs several inputs, primarily 1) a DEM (Digital Elevation Map) in ISIS Cube
format, whose data may be specified as either elevations or radius values, 2) a sub-solar point defined
by longitude and latitude in degrees (if running via Lunaserv, a time can be passed in, and Lunaserv
will derive the sub-solar coordinates using SPICE), and 3) the geographical region to be observed and
synthesized. From these inputs and various pieces of optional information, map_illum_layer outputs
an image in PNG format representing the synthesized illumination across the desired region.
 map_illum_layer performs both shadowing (detecting which areas are completely obscured from
sunlight by blocking terrain) and shading. The application also includes support for the user to choose
between several photometric functions, and a straightforward mechanism for programmers to
implement new photometric functions. Currently available are an implementation of the basic
Lambertian law [2] and an implementation of the Lommel-Seeliger law [3].

Introduction

How does it work?
 At the outermost level, map_illum_layer works by iterating through every pixel of desired output and
deciding on a pixel-by-pixel basis how to color the pixel. For example, if the user requests a 2,000x2,
000 image, map_illum_layer will execute 4,000,000 iterations through the main loop, one to decide
how to color each of the 2,000 * 2,000 = 4,000,000 pixels.
 For each pixel, the first step is to convert the location from image space (pixel coordinates) to
geographic space. map_illum_layer, like all of Lunaserv's renderers, uses the PROJ.4 library [4] to
perform projection transformation. Thus, a wide variety of projections are supported, and the user of
the application can choose an output projection using a PROJ.4 projection string (the default is
equirectangular).
 Once the pixel has been resolved to a geographic location, the next step is to check whether or not
that particular point on the surface is shadowed. map_illum_layer uses a basic ray-tracing algorithm
[5]. First, the longitude and latitude of the point are converted to a 3-element vector of rectangular
coordinates; the DEM is also consulted in order to refine the vector based on the elevation of the
surface point. Then, map_illum_layer steps from this surface point directly towards the location of the
Sun in Cartesian space, checking points along the way to see whether or not they are below the
surface -- if it finds at least one such point, then the original point is deemed shadowed, as a higher
elevation terrain point has been found which blocks the original point. If map_illum_layer reaches a
point where it can be safely assumed that continuing the search would be pointless (as we are getting
too far away from the surface in our search), then it assumes that the point in question is not
shadowed.

Examples of shadow determination
 Note: The distance interval between checked points along the vector towards the Sun must be
carefully chosen. Too coarse a search, and the algorithm might step past a small facet of Sun-
blocking terrain in between checks. However, the finer the search, the longer it takes map_illum_layer
to run; shadow-checking is where map_illum_layer usually spends a majority of its runtime. By
default, map_illum_layer currently uses an interval of five times the pixel resolution of the input DEM,
but this value can be overridden by the user.

How does it work? (cont'd)
 If a pixel is determined to be shadowed, map_illum_layer writes a shadow DN (by default black, but
overridable by the user) and continues to the next pixel. However, if the pixel is not shadowed, then
map_illum_layer proceeds to compute three illumination-related angles -- incidence, emission, and
phase -- which are required in order to execute a photometric function and thus determine shading.
 map_illum_layer computes both incidence and emission angles with respect to local topography, in
order to yield accurate results. The phase angle is then calculated as the angle between the vector
toward the Sun and the vector toward the viewer.
 In order to do this, map_illum_layer first locates the point of interest in the input DEM. Three pixels
are chosen from the DEM -- a "center-pixel", a "left-pixel", and an "above-pixel". If the pixel of interest
is not on the very top or left edge of the DEM, it is used as the center-pixel. If it does lie on one or
both of these edges, an adjacent pixel (to the right, below, or both) is chosen as the center-pixel. The
pixel above the center-pixel is the above-pixel, and the pixel to the left of the center-pixel is the left-
pixel. The longitudes, latitudes, and elevations of these three pixels are fetched from the DEM, and
with this information, map_illum_layer converts the three points into three-dimensional Cartesian
coordinates that account for elevational difference. From here, it derives a vector from the center-pixel
to the above-pixel, and another from the center-pixel to the left-pixel, then takes the cross product of
the two vectors (in the same order) to obtain a surface normal vector that is topographically
appropriate for the surface point in question. From this surface normal, an emission angle and an
incidence angle which are both topographically accurate are derived.

How does it work? (cont'd)
 Once the illumination angles have been computed, map_illum_layer proceeds to execute the
photometric function that was selected by the user. By default, a simple Lambertian model is used,
wherein the pixel is shaded based on the cosine of the incidence angle.
 A Lommel-Seeliger-based model is also available; when using this option, map_illum_layer's
behavior is to first cap the incidence and emission angles to a maximum of 88 degrees, in order to
avoid wildly varying results that the formula yields when incidence and/or emission is too close to 90
degrees; without using this restraint, output values can range into the hundreds of thousands, but
applying the restraint generally keeps output values between 0 and 1. Then, the expression:

is computed. The result is constrained to the interval [0, 1] (if it is not already in this interval), and then
passed through a "brightening" polynomial function:

This function is the simplest polynomial which maps 0 to 0, 1 to 1, and 0.5 to 0.75, resulting in an
overall brightening effect for the output.
 After computing the result of the photometric function, the pixel is colored appropriately; by default, a
result of 0 leads to a black pixel and a result of 1 leads to a white pixel. Everything in between is a
shade of grey, scaled linearly based on the result from the photometric function. Both the maximum
illumination and minimum illumination can be overridden by the user, and values in between are
automatically computed by map_illum_layer using RGB values interpolated from the minimum and
maximum.

Overview of per-pixel logic

map_illum_layer example output
 Following is a comparison between actual NAC (Narrow Angle Camera) imagery of Moore F crater
at longitude 175°W, latitude 37.3°N (top) and an illumination map produced by map_illum_layer given
the same sub-solar coordinates (bottom). The contrast is generally higher in the illumination map than
in the actual image because map_illum_layer by default does not account for surface albedo. The
illumination map was generated at an output resolution of 1000x6500 pixels or 6.5 megapixels, with a
2m/px DEM as input. The process took about four minutes and eight seconds on a current model
workstation.

Uses
 The illumination synthesis provided by map_illum_layer is used for a variety of benefits at the LROC
SOC:

 Camera operators can use the application to predict lighting conditions in upcoming days in
LRO's flight path; this is extremely helpful in selecting worthwhile imaging targets.
 In particular, map_illum_layer is especially helpful in scheduling polar targeting campaigns.
 Since map_illum_layer will accept any sub-solar point, including physically impossible
locations (i.e. any point with a latitude significantly far from zero), research regarding planetary
topography is furthered by the ability to synthesize a scene with artificial lighting conditions.

Scheduling targets near the day/night terminator Pinpointing a lone illuminated facet
Illumination map centered on the north pole and
simulating a sub-solar point of 0°E, 30°N.

Other features
 map_illum_layer has undergone significant improvements in the short time since the writing of the
abstract for this presentation. Particularly of note, the Lommel-Seeliger lighting model was not
available until recently, and the method of surface normal computation (for determining local incidence
angles) was completely re-designed for accurate results and to remove a potentially-confusing
mathematical parameter.
 Another feature recently added to map_illum_layer is the ability to specify an ISIS cube containing
albedo values. These values have no effect on shadowing, but when shading is being performed, the
original shading result is multiplied by the albedo value at the point in question to arrive at a final
shading result.
 map_illum_layer has the option to employ a simple but effective technique for reducing runtime
when the input DEM is very large. On a system with ample RAM, the entire cube file can be pre-
cached into a buffer in memory. The disk I/O cost of this initial pre-load is far outweighed by the time
saved later, during processing.
 Although map_illum_layer considers the Sun to be a point source and not a disc, it has been
recently modified to consider the *edge* point of the Sun closest to the zenith, rather than the center.
This provides increased accuracy, particularly in situations where the Sun is near the horizon and the
small angular difference between the center of the Sun and the "top" edge of the Sun can cause a
very noticeable difference in illumination. Since this difference is dependent on the distance to the
Sun, the user can specify this distance; the default is one astronomical unit, appropriate for both Earth
and the Moon.

Future plans
 The next goal is to implement a photometric function for enhanced detail and realistic synthesis of
lunar lighting conditions, using the models that Dr. Bruce Hapke has developed [6].

Want to try it out?
 map_illum_layer, along with the entire Lunaserv package, is open source and can be downloaded
from the Lunaserv website [7]. map_illum_layer is written in C, with liberal use of C99-only syntax.
Provided some library dependencies are available, it should easily compile on any POSIX-compliant
system with a recent version of the GNU C Compiler installed (other compilers supporting C99 will
probably work as well).
 map_illum_layer is also demonstrated on the web interface [8] to Lunaserv. If you are viewing the
Moon or Mars (accessible via the "Object to view" control in the "Map Options" dialog box), you can
enable the use of map_illum_layer to plot illumination data as follows. In the "Layers" dialog box,
under the menu "Miscellaneous", enable the "GLD100 DEM based illumination" layer (for the Moon) or
the "MOLA DEM based illumination" layer (for Mars).

References

[1] http://adsabs.harvard.edu/abs/2013LPICo1719.2609E

[2] http://www.princeton.edu/~achaney/tmve/wiki100k/docs/Lambert_s_cosine_law.html

[3] http://astrowww.phys.uvic.ca/~tatum/plphot/plphot01.pdf

[4] http://trac.osgeo.org/proj/

[5] http://www.codermind.com/articles/Raytracer-in-C++-Introduction-What-is-ray-tracing.html

[6] http://onlinelibrary.wiley.com/doi/10.1029/JZ068i015p04571/abstract

[7] http://lunaserv.lroc.asu.edu/

[8] https://webmap.lroc.asu.edu/

http://adsabs.harvard.edu/abs/2013LPICo1719.2609E
http://www.princeton.edu/~achaney/tmve/wiki100k/docs/Lambert_s_cosine_law.html
http://astrowww.phys.uvic.ca/~tatum/plphot/plphot01.pdf
http://trac.osgeo.org/proj/
http://www.codermind.com/articles/Raytracer-in-C++-Introduction-What-is-ray-tracing.html
http://onlinelibrary.wiley.com/doi/10.1029/JZ068i015p04571/abstract
http://lunaserv.lroc.asu.edu/
https://webmap.lroc.asu.edu/

